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Dense matter in neutron stars: progress, challenges, and implications
Sanjay Reddy, Institute for Nuclear Theory, University of Washington, Seattle.  

• Introduction to dense matter in neutron stars 


• Neutron star structure and the equation of state.  


• Transport in a solid and superfluid crust.  


• Neutrino transport in warm dense matter.  



Nature of matter at extreme 
density?

Origin of cosmic explosions? 

Neutron Stars and Big Questions  

Synthesis of heavy elements?  

Nature of dark matter? 

Measuring and interpreting 
neutron star properties has  
far reaching implications.    
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Inside Neutron Stars

Nuclei and relativistic electrons. 

Neutron-rich nuclei, relativistic electrons, 
superfluid neutrons  

Neutrons (~ 90%), protons, relativistic electrons, 
muons. Description in terms of baryons remains 
useful.  Superfluid neutrons & superconducting 
protons.  

Complex strongly interacting relativistic matter. 

Description not simple in terms of either baryons 
or quarks. Quarkyonic Matter? 

Ordered quark matter?  color superconductor? 



Part I: Equation of State and Neutron Star Structure 
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Nuclear Forces from Effective Field Theory (EFT) 
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EFT Hamiltonians organizes operators in powers of the momentum:

Beane, Bedaque, Epelbaum, Kaplan, Machliedt, Meisner, Phillips, Savage, van Kolck, Weinberg, Wise .. 
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Hebeler and Schwenk (2009), Gandolfi, Carlson, Reddy (2010), Gezerlis et al. 
(2013), Tews, Kruger, Hebeler, Schwenk (2013), Holt Kaiser, Weise (2013), Hagen 
et al. (2013), Roggero, Mukherjee, Pederiva (2014), Wlazlowski, Holt, Moroz, 
Bulgac, Roche (2014), Tews et al. (2018), Drischler et al., (2020). 

Equation of State of Dense Nuclear Matter 

Quantum many-body calculations of neutron matter and 
nuclear matter using EFT-inspired potentials show 
convergence up to about twice nuclear saturation density. 

Many-body perturbation theory, coupled-cluster, and 
Quantum Monte Carlo methods have been employed to 
calculate the energy of dense neutron matter.    

Drischler et al. used Bayesian methods to systematically 
estimate the EFT truncation errors in neutron and 
nuclear matter.
Drischler, Furnstahl, Melendez, Phillips, (2020).
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FIG. 6. Energy per particle in PNM with truncation errors
using the ⇤ = 500MeV interactions in Table I. From left
to right, top to bottom, the panels show the order-by-order
progression of EFT uncertainties as the �EFT order increases.
The bands indicate 68% credible intervals.

useful to leave c3(kF) (N2
LO) out of our inductive model

for higher-order terms.

Additionally, the diagnostics point to the possibility
that the NN-only coefficients c0(kF) (LO) and c2(kF)

(NLO) may have a different correlation structure than
higher orders. As noted above, this is suggested by a vi-
sual inspection of Figs. 2 and 3, where c0(kF) and c2(kF)

appear much flatter than c3(kF) (N2
LO) and c4(kF)

(N3
LO). An investigation in this direction is presented

in Appendix A. There we have attempted to isolate the
strongly repulsive 3N contributions that change the cor-
relation structure by splitting the coefficients into NN-
only and residual 3N coefficients with each having differ-
ent kF dependence in yref(x). This succeeds in making
the coefficients more uniform and improves the diagnos-
tics for PNM, but does not improve SNM significantly.
Crucially, the order-by-order uncertainty bands for PNM
and SNM presented in the next section are almost un-
changed when this alternative model is used; the sat-
uration ellipses do become slightly larger though. We
provide these details, along with annotated Jupyter note-
books [50] that generate them, to promote further inves-
tigation, possibly with other EFT implementations, into
the systematic convergence of infinite matter.

FIG. 7. Similar to Fig. 6 but for SNM. The gray box depicts
the empirical saturation point, n0 = 0.164± 0.007 fm�3 with
E/A(n0) = �15.86±0.57MeV, obtained from a set of energy-
density functionals [18, 51] (see the main text for details).

FIG. 8. Credible-interval diagnostics for the E/N(n) (left-
hand side) and E/A(n) uncertainty bands (right-hand side)
for the ⇤ = 500MeV interactions in Table I; for details see
Ref. [25]. At each order we construct an uncertainty band for
the upcoming correction (not the full truncation error) and
test whether the next order is contained within it at a specific
credible interval. The expected size of fluctuations due to the
finite effective sample size of the curves is depicted using dark
(light) gray bands for the 68% (95%) interval. Both bands are
quite large, which shows that correlations are crucial to assess
whether truncation errors have been properly assigned.

C. Quantified uncertainties for PNM and SNM

The GP truncation error model described in Sec. II
combined with the hyperparameter estimates now permit
the first statistically rigorous �EFT uncertainty bands
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Equation of State of Neutron Star Matter 
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(b)

¢P (nB) = PPNM(nB) ° PNSM(nB)

Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)

PNSM(nB = 0.34 fm−3) = 20.0 ± 5 MeV/fm3

PNSM(nB = 0.16 fm−3) = 3.0 ± 0.2 MeV/fm3

Many-body perturbation theory and Bayesian 
analysis of the EFT truncation errors predict: 

Important caveat: Errors due to cut-off and 
regularization schemes are not well 
understood. Perturbative methods fail for 
EFT potentials with large cut-off.  

Christian Drischler Sophia Han Tianqi  Zhao 
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Bounds on Neutron Star Radii 
EFT predictions for the EOS can be combined 
with extremal high-density EOS (with ) to 
derive robust bounds on the radius of a NS of 
any mass. 


The lower limit on the NS maximum mass 
obtained from observations strengthen these  
bounds:


• , 9.2 km <  R1.4 < 13.2 km 


• , 11.2 km <  R1.4 < 13.2 km


If R1.4 is small (<11.5 km) or large (>12.5 km), it 
would imply a very large speed of sound in the 
cores of massive neutron stars. 

c2
s = 1

Mmax > 2.0 M⊙

Mmax > 2.6 M⊙

Drischler, Han, Lattimer, Prakash, Reddy, Zhao (2020)
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Figure 1. Two possible scenarios for the evolution of the speed of sound in dense matter.

For QCD at finite baryon density, we are unaware of compelling reasons to expect that c2S <
1/3, and based on the preceding arguments, we will consider two minimal scenarios, which are
illustrated in Fig. 1. The scenario labeled (a) corresponds to the case when we assume that QCD
obeys the conformal limit c2S < 1/3 at all densities, and scenario (b) corresponds to QCD violating
this conformal bound. The behavior of cS at low and high density is constrained by theory, and
we shall show that NS observations, when combined with improved ab initio calculations of PNM,
can distinguish between these two scenarios, and provide useful insights about matter at densities
realized inside NSs.

This paper is structured as follows. In Section 2, we present constraints on the speed of sound from
nuclear physics. In Section 3, we extend the speed of sound to higher densities. In Section 3.1, we
study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
bounded by 1/

p
3. For this case, we find that cS needs to increase very rapidly above 1 � 2n0 to

stabilize a 2 M� NS. Such a rapid increase likely signals the appearance of a new form of strongly
coupled matter where the nucleon is no longer a useful degree of freedom. In Section 3.2, we release
this assumption but still find that models in which cS increases rapidly, reaching values close to c,
are favored. We study correlations in our parameterization in Section 3.3. In Section 4, we derive the
smallest possible radius for NSs consistent with nuclear physics and observations. We then investigate
the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews, Carlson, Gandolfi and Reddy (2018) 
Steiner & Bedaque (2016)

Large maximum mass and 
observed radii, combined with 
neutron matter calculations, 
suggest a rapid increase in 
pressure in the core.   

This implies a large and non-
monotonic sound speed in 
dense QCD matter.  

Suggests the existence of a 
strongly interacting phase of 
relativistic matter in the inner 
core. 

✔

✘

c2
s =

∂P
∂ϵ
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study the EOS under the assumption that the conformal limit is obeyed and the speed of sound is
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the impact of possible additional observations in Section 5. Finally, we summarize our main findings
in Section 6.

2. EOS AND SPEED OF SOUND FROM NUCLEAR PHYSICS

2.1. The EOS of neutron matter

In this work, we use auxiliary-field di↵usion Monte Carlo (AFDMC) to find the many-body ground
state for a given nonrelativistic nuclear Hamiltonian (Carlson et al. 2014). In general, the nuclear
Hamiltonian contains two-body (NN), three-body (3N), and higher many-body (AN) forces,

H = T + VNN + V3N + VAN , (2)

Tews, Carlson, Gandolfi and Reddy (2018) 
Steiner & Bedaque (2016)

Large maximum mass and 
observed radii, combined with 
neutron matter calculations, 
suggest a rapid increase in 
pressure in the core.   

This implies a large and non-
monotonic sound speed in 
dense QCD matter.  

Suggests the existence of a 
strongly interacting phase of 
relativistic matter in the inner 
core. 

✔

✘

✔

✔

c2
s =

∂P
∂ϵ



Part II: Crust
Evidence for a solid and superfluid state of matter. 
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Cooling Post Accretion  
•Relaxation observed in 7 sources to date.


•All known Quasi-persistent sources show 
cooling after accretion


•Cools on a time scale of ~1000 days.


Figure from Rudy Wijnands (2013)
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Excitations and Interactions in the Inner Crust

electrons lattice 

phonons

superfluid 

phonons

Cirigliano, Reddy & Sharma (2011), Page & Reddy (2012), Chamel, Page, & Reddy (2013) 

electron-phonon

electron-impurity

electron-electron

Thermal and transport properties of the 
solid and superfluid crust can be calculated 
using  effective field theory. 

Electrons and phonons are the relevant 
excitations. 

Phonons of the neutron superfluid mix with 
phonons of the lattice. 

In the crystalline-superfluid state electron conduction is high & heat capacity is low.    
(Gases and ordinary liquids have low conductivity and high heat capacity.) 
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Phonon Mixing and Entrainment

Low-energy constants can be obtained from 
the ground state thermodynamics and 
neutron band-structure calculations.    

A key feature is the entrainment of a large 
fraction of neutrons by the lattice.     

Cirigliano, Reddy, Sharma (2012)

Carter, Chamel, Haensel (2005)

Large entrainment and mixing have 
important consequences for superfluid heat 
conduction and lattice heat capacity.      
Chamel, Page, Reddy  (2012)



Evidence for a solid and superfluid inner crust.  

Crust ThicknessCrustal Specific Heat

Thermal Conductivity 

• 1000-day cooling timescale requires small specific heat and 
large thermal conductivity.

• The inner crust must be solid (for high electron conduction) 
and neutrons must be superfluid (to have low heat capacity)! 

Shternin & Yakovlev (2007) Cumming & Brown (2009) Page & Reddy (2011)

τcool ≃
CV

κ
ΔR2



Part III: Neutrino Transport 



Neutrino transport and Nucleosynthesis 

Neutron-rich ejecta from neutron star 
mergers and supernovae are potential 
sites of heavy-element nucleosynthesis.  

A high neutron excess (>75%) is needed 
to make the heaviest elements like gold, 
platinum, and uranium. 

νe + n → p + e−

ν̄e + p → n + e+

Neutrino-sphere at high 
density.  R ~ 10-20 km

Neutrinos alter the composition 
of ejecta at low density and high 
entropy. 

PNS

R ~ 103-104 km



Neutrino Interactions in Dense Matter

3

The lepton tensor is

L
µ⌫ = Tr

⇥
(�6 p1 + m1)�

µ(1 � �
5)(�6 p3 + m3)�

⌫(1 � �
5)
⇤

, (7)

where q
µ = p

µ
1 � p

µ
3 = p

µ
4 � p

µ
2 is the energy-momentum transfer from the leptons to the baryons. In our case since

particle 1 is a neutrino m1 ⇡ 0 and m3 = ml where ml is the final charged lepton, ml = me for electrons and ml = mµ

muons, in the final state. The upper sign is for neutrinos while the lower sign is for antineutrinos, due to their left
and right handed character. We use the standard Feynman slash notation, where a slash denotes contraction of a
four-vector with the gamma matrices.

Inspecting the kinematics of the leptons gives the allowed range of values for the energy and momentum transfer
to the nucleons for given four-momentum of particle 1,

q =
q

p
2
1 + p

2
3 � 2p1p3µ13 (8)

q0 = E1 � E3 , (9)

where µ13 is the cosine of the angle between the momentum vectors of particles one and three and pi is the magnitude
of the momentum of particle i. The maximum and minimum values of this expression shows that the allowed range
of momentum transfers to be |p1 � p3| < q < p1 + p3. When both particles one and three are massless, these relations
imply q

2
µ < 0 and |q0| < q < 2E1 � q0, but these constraints do not hold for charged current reactions in which the

final state lepton mass cannot be neglected.
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described in Appendix B. Then, the baryon contribution to the matrix element in the mean field approximation is
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Eq. 11 together with Eq. 12 can be used to calculate the charged current opacity. This would include corrections

due to mean field potentials, relativistic kinematics and weak magnetism. We calculate Iµ⌫ in detail in section II B,
but first we show that the same result can be found from linear response theory.

A. The Charged Current Polarization Tensor

The neutrino absorption rate in nuclear matter can be calculated using linear response theory because at leading
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tensor. The correct inclusion of these extra terms is likely to impact the response of the medium when correlations
are included through the RPA (see below). 3) They neglected weak magnetism corrections, which can be important
for predicting the di↵erence between electron neutrino and electron anti-neutrino spectra and nucleosynthesis in the
neutrino driven wind, as well as the deleptonization rates of protoneutron stars [29].

As a base line for future studies that would include correlations, we derive for the first time the charged current
absorption rates for electron neutrinos which include all of the following e↵ects: 1) di↵erent mean-field potential
energy shifts for neutrons and protons in neutron-rich matter; 2) relativistic contributions to the nucleon charged
currents; 3) weak magnetism; and 4) e↵ects due to the violation of the isospin symmetry, and consequently the lack of
conservation of the nucleon charged current in asymmetric matter [28]. We provide derivations of these results both
from the perspective of Fermi’s Golden Rule, and in the language of finite temperature quantum field theory. In the
neutral current limit, these expressions reduce to those given in [22]. A library for calculating neutrino interaction
rates based on this work is available at https://bitbucket.org/lroberts/nuopac.

The paper is structured as follows: In section II, we derive the general form of the charged current opacity from
Fermi’s Golden Rule. In section II A, we calculate the full charged current polarization tensor and show that its
imaginary part agrees with the Fermi’s Golden Rule results. We then present practical representations of the response
in section II B. We also discuss some approximations to the charged current absorption rate in section II C. In section
III, we present limiting forms of the rates and assess the impact of the new terms. Throughout, we set ~ = c = kB = 1
and use a metric with signature (+ � ��).
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is the nucleon charged current which includes the vector, axial vector, and weak magnetism contributions, characterized
by coupling strengths gV = 1, gA = 1.26, and F2 = 3.71, respectively, and M = (Mn + Mp)/2 = 938.9 MeV and
Mp, Mn are the proton and neutron masses, respectively. Here, the currents are written using Dirac spinors  i, l and
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the two-particle process, l1 + N2 ! l3 + N4, where l1 and l3 are the initial and final state leptons, and N2 and N4

are the initial and final state nucleons, respectively, can be calculated from Fermi’s Golden Rule. In the relativistic
formalism, the di↵erential cross-section for the process 1 + 2 ! 3 + 4 is given by
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is the Lorentz invariant phase which includes e↵ects due to Pauli blocking of the final states and h|M |
2
i is the square

of the matrix element – averaged over initial spin states and summed over the final spin states. The di↵erential
absorption rate for a neutrino with energy E1 in the medium where the density of the particle 2 is n2 is given by
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where f2 is the distribution of the particle 2 in the medium and the factor of 2 on the RHS accounts for its spin
degeneracy. The distribution functions fi are assumed to be Fermi-Dirac distributions characterized by chemical
potential µi and temperature T . Using the standard decomposition of the square of weak matrix element for free
nucleons in terms of the lepton tensor and the baryon tensor, we find that
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where Lµ⌫ is the lepton tensor defined earlier in Eq. 7,
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is the retarded current-current correlation function or the polarization tensor where jµ is the weak charged current
defined in Eq. 2 and h| · · · |i is the thermodynamic average = Tr [exp(�(H �

P
i µiNi)) · · · ]/Z where Z is the grand

canonical partition function. The relationship in Eq. 14 between the correlation function and the dynamic structure
factor is often called the fluctuation-dissipation theorem [31, 32].

This correlation function encodes all of the complexities associated with interaction between nucleons in the plasma
and is in general di�cult to calculate. When nucleons are treated as non-interacting particles, the polarization tensor
can be calculated using the free single particle Greens functions. We use the imaginary time formalism [33], where
the free nucleon propagator at zero chemical potential is given by
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where !n is a Fermionic Matsubara frequency. The extension to non-zero chemical potential is straightforward and
is obtained by the replacement i!n ! i!n + µ (see [33] equation 5.70). The e↵ects due to a space-time independent
background mean field potential can also be similarly included since its contribution to the grand canonical Hamilto-
nian is proportional to
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0 , similar to the chemical potential (see Appendix B). Additionally, the numerator,
which comes from a spin sum, should be replaced by the spin sums described in Appendix B. These considerations
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where the �a represent di↵erent interaction vertices (i.e. CV �
µ, etc.), i!m is a Bosonic Matsubara frequency, and

�µ = µ2 � µ4.
Using the Matsubara sum results from appendix C and the baryon tensor portion of the weak interaction matrix
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Isospin density response 

Spin-isospin density response 

These response functions are strongly modified due to nuclear interactions:  

• Difference in the dispersion relations of neutrons and protons.


• Correlations and collective excitations   
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FIG. 5. (Color online) Momentum dependence of the neutron and proton single-particle energies in hot (T = 8
MeV) and dense (nB = 0.02 fm�3) beta-equilibrated nuclear matter calculated in the HF approximation from
the pseudo-potential. The solid and dashed lines are parametrized fits, with the form given in Eq. (11), of the
non-relativistic dispersion relations for protons and neutrons respectively.

theoretical band for the prediction of the HF pseudo-potential approach as shown in Fig. 4 and in all

future plots where the pseudo-potential results are shown.

The ambient conditions encountered in the neutrino-sphere span densities and temperatures in the

range nB = 0.001 � 0.05 fm�3 and T = 3 � 8 MeV. To study the nuclear medium e↵ects, we choose

baryon density nB = 0.02 fm�3 and temperature T = 8MeV to compare with earlier results obtained in

Ref. [23]. For these conditions the pseudo-potential predicts a proton fraction of Yp = 0.049 (modified

pseudo-potential: Yp = 0.038), while for the HF chiral NN potential we find Yp = 0.019. The neutron and

proton momentum-dependent single-particle energies associated with mean-field e↵ects from the nuclear

pseudo-potential are shown with filled circles and squares in Fig. 5, and qualitatively similar results were

found for the chiral NN potential and modified pseudo-potential. For convenience in calculating the

charged-current reaction rates described later in the text, we parametrize the momentum dependence
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Closing Remarks 

• Many-body theory for dense neutron-rich matter has broad implications for neutron stars 
and nuclear astrophysics. 


• Interplay between EFT and RG inspired potentials and many-body approximations needs to 
be better understand and could lead to improved error estimates.  


• The equation of state at moderate density encountered in the outer core is calculable and it 
strongly constrains neutron star structure.   


• Thermal and transport propertied of the solid and superfluid inner crust plays a role in 
thermal evolution. We now have a qualitative understanding of entrainment and mixing.  


• Response functions (density, spin, isospin, spin-isospin) all play an essential role in neutrino 
transport in supernovae (and neutron star mergers). We now have a qualitative 
understanding of the importance of correlations but reliable error estimates are lacking.        


