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Noninteracting	systems.

1D	and	2D	-	all	states	are	localized.	

Image	from	J.	Billy,…,	A.	Aspect	2008	
-	Anderson	Localization	in	1D	BECs

H = − t∑
⟨ij⟩

c†
i cj + hjnj, hj ∈ [−W, W ]

Disorder	leads	to	localization	in	low-dimensions.	

High	dimensions,	Bethe	lattices,	
Random	Regular	graphs:	phase	
transitions	between	delocalized	and	
localized	phases:

Wc ∼ ζ, the coordination number



MBL:	localization	in	disordered	systems	are	stable	to	short	range	interactions.D.	Basko,	
I.	Aleiner,	B.	Altshuler	2006,	I.	Gornyi,	A.	Mirlin,	D.	Polyakov,	2005;	V.	Oganesyan,	D.	
Huse,	2007,	…	Onsager	prize	2022.

Cartoon	picture:	MBL	is	like	a	Fock	space	localization	(similar	to	RRG).		
Sites	are	1001010110, 0101010110,…

Competition	between	growing	density	of	states	and	matrix	elements.	Claim:	at	
strong	disorder	matrix	elements	decay	faster	than	density	of	states	grows.	

Image	taken	from	Z.	Papic	talk



Conventional	mapping	from	particles	to	spins.	Exact	for	hard	core	
bosons	in	any	D	or	fermions	in	1D

⇒ ⇒

Classically:	bad	(off-resonant)	transmission	line.	Exponentially	suppressed	transport	
	(V.	Oganesyan,	D.	Huse	2009).	Intermediate	time	glassy	subdiffusive	

dynamics	(J.	Wurtz,	A.P.,	D.	Sees,	A.	Sajna,	2018	+	).
κ ∼ exp[−CW/J ]

H = ∑
j

hjs
j
z + J∑

⟨ij⟩

⃗si ⋅ ⃗sj,

hj ∈ [−W, W ]

The	typical	model h1

h2
h3

J J J J J

Quantum	mechanics.	Main	claim:	localization,	no	transport,	no	ergodicity	in	TD,	time	
crystals,	robust	quantum	memory,….

Punchline	of	this	talk:	no	evidence	that	QM	plays	qualitative	role	at	a	finite	temperature



Potential	problems	with	mapping	MBL	to	Anderson	problem

Perturbation	theory	(from	BAA	paper):

	is	an	eigenstate	|Ψk⟩

Take	the	Fourier	transform	in	time

They	also	show	 |ψ (3)
kα ⟩



Problems	with	this	expansion:	

1. Too	many	terms	in	the	perturbative	expansion	 	
2. Have	to	deal	with	small	denominators	

Nn ∼ min(n!, Vn)

Solution:		
	
1)	argue	that	 ,	 	is	the	single-particle	level	spacing	within	 ;	
lattices	 coordination	number	

2)	Argue	that	the	problem	maps	to	an	Anderson	localization	problem	with	this	K.	

Developed	a	more	detailed	formalism	to	justify	these	assumptions.

Nn ∼ Kn, K ∼ T/δξ δξ ξd

K ∼

A	similar	argument	by	A.	Mirlin	et.	al.	Real	connectivity	is	 	but	most	terms	lead	
to	large	denominators.		

No	proof	or	numerical	test	of	this	statement	was	ever	given	(to	our	knowledge).	Many	
theory	papers	site	this	argument	as	an	evidence	that	the	factorial	growth	is	absent.	

K ∼ V



LIOM	(local	integrals	of	motion)	picture	of	MBL.	M.	Serbyn,	Z.	Papi	ć,	D.	
A.	Abanin	(2013);	V.	Oganesyan	and	D.	Huse	(2013).

In	MBL	systems	there	exist	an	extensive	
set	of	localized	conserved	operators	 		
(dressed	localized	spins/particles).	

The	argument	is	a	bit	circular	if	there	is	
MBL,	there	must	be	such	states	and	vice	
versa.

τz
i

In	retrospect	this	idea	came	from	
insufficient	understanding	of	classical	
chaos	and	a	difference	between	
localization	in	phase	space	and	
integrability.	

At	best	LIOMs	are	eigenstate-dependent	
operators,	i.e.	they	do	not	exist	in	TD	limit.

Chirikov	map	
(kicked	rotor).	KAM	
guarantees	
localization	but	
there	are	no	LIOMs.	



Problems	with	initial	arguments.	The	avalanche	instability.

In	TD	limit	there	is	always	a	nonzero	
probability	of	an	ergodic	(ETH)	island.		

If	 	
the	impurity	will	hybridize	with	the	ETH	
island	absorbing	it.

ϵ > exp[−S/2] ∼ exp[−N log(2)/2]

ϵ1

ϵ2

ϵ3
Idea	(W.	De	Roeck,	F.	Huveneers	2016):		

,		ϵn ∼ exp[−na /ζ], S = nd log(2)

Localization	cannot	exist	in	d>1.	Localization	is	a	UV	effect:	 .	
Either	this	argument	or	the	original	BAA	argument,	which	has	no	UV	or	finite	d	physics,	must	
contain	an	error.	What	is	 	-	the	localization	length?

ϵn < exp[−S/2] → ζ < 2a / log(2)

ζ

ϵ



Extensive	state	of	the	art	numerical	work	since	2007.	“Strong”	support	for	MBL

Standard	Model	for	MBL	amenable	to	numerics:	disordered	Heisenberg	(XXZ)	chain:	
H = ∑ SjSj+1 + hjSz

j , hj ∈ [−W, W ]

Many	other	papers	“confirming”	MBL	transition	near	 .		
Analytic	“proof”	of	stability	of	MBL	phase	by	J.	Imbrie	with	few	extra	assumptions	(limited	level	
attractions)	for	stability	of	MBL	phase	at	weak	interactions	(2016).	

Wc ≈ 3.6

D. J. Luitz, N, Laflorencie, and F. Alet, PRB 2015. Critical disorder  from level statisticsWc ≈ 3.72

Disorder	W



A	“key”	difference	between	the	Anderson	localization	and	MBL:	logarithmic	entanglement	
growth	(in	simple	words	growth	of	transverse	correlations)

J.	H.	Bardarson,	F.	Pollmann,	and	J.	E.	Moore	(2012)



Beautiful	experiments	in	cold	atoms:	interacting	fermions	with	quasi-periodic	
incommensurate	potential

M.Schreiber,	…	I.	Bloch,	Science	2015	

Several	more	experiments	by	different	
groups	including	in	2D.



Numerical	confirmation	of	LIOM	theory:	exponential	scaling	of	the	slowest	operator	
with	the	system	size	(vs.	expected	diffusive	in	ergodic	systems)

“Exponential scaling” of the slowest operator in the MBL phase (T O'Brien, D Abanin, 
G. Vidal, and Z. Papic, PRB, 2016)



Situation	is	largely	clear	by	2018.	Only	details	are	missing	like	correct	critical	
exponents	(RG	schemes	predicted	KT),	sub-diffusion	exponents	on	the	ergodic	
side,	reconciliation	of	the	avalanche	instability	and	BAA	.…		

The	Thouless	time	extracted	from	the	spectral	form	factor

J.	Suntajs,	J.	Bonca,	Tomaz	Prosen,	and	L.	Vidmar	(2019).		
No	signature	of	transition	with	increasing	L.	Maybe	the	elephant	is	not	there!



Imbalance	decay,	similar	to	the	experiments	in	the	group	of	I.	Bloch	(2016).

P.	Sierant,	and	J.	Zakrzewski,	Can	we	observe	the	many-body	localization?,	2021.	Rule	
out	transition	for	 .	This	disorder	was	thought	to	be	deep	inside	MBL	phase	

Thouless	time	in	the	ergodic	phase	(before	critical	slowing	down):	 	

W < 10

tTh ≳ exp[35]

Further	numerical	tests	showed	that	previous	numerical	extrapolations	were	
grossly	wrong.



Idea	of	defining	chaos	separate	from	ergodicity:	use	
sensitivity	of	eigenstates	as	a	measure	of	chaos.

Classical	systems:	very	fragile	trajectories Quantum	systems:	very	fragile	eigenstates

|δ ⃗x(t) | ∼ |δ ⃗x0 |exp[λt], λ 	is	the	Lyapunov	exponent



Φλ(ω) =
1

2π ∫ dt eiωt ⟨n |∂λH(t)∂λH(0) |n⟩c ∼ ϵ′ ′ (ω) ∼ ΓFGR(ω)

RMT,	diffusion,	kinetic	theories,…	 .		

Conclusion:		

→ Φλ(ω) = const, ω < ωTh = D/L2

χλ ∼ ∫
dω
ω2

∼
1

ωH
∼ exp[S]

χλ =
1
D ∑

m≠n

|⟨n |∂λH |m⟩ |2

(Em − En)2
= ∫ dω

Φλ(ω)
ω2

The	problem	of	small	denominators	leads	to	(exponentially)	high	in	system	
size	sensitivity	of	eigenstates.	Expect	finite	 	in	integrable	systems.	

Classically	 	has	a	meaning	of	the	norm	of	the	generator	of	the	complexity	
preserving	canonical	transformation.	

χλ

χλ

Quantum	geometric	tensor	(fidelity	susceptibility,	Fisher	information)

χλ = ⟨n |∂λ∂λ |n⟩ − |⟨n |∂λ |n⟩ |2



Qualitative chaos phase diagram for generic models

χ ∼ exp[S]

χ ∼ exp[2S]

χ ∼ Lα



Strong	disorder:	MBL	seems	unstable	(D.	Sels,	A.P.	2020,)

Linear drift of the 
maximum of fidelity 
with the system size. 
Consistent with 
J.Suntajs et. al. 2019. 

 

Transition occurs 
when 

tTh ∼ exp[3.5W ]

tTh ∼ 1/ωH ∼ 2L



χ ty
p/

χ E
TH

Comparison	of	clean	and	disordered	systems

Δ′ 

Strong	(nearly	exponential)	drift	of	the	
ergodicity		threshold	with	the	system	size.

L = 18

L = 24
Clean:

Anderson	insulator	with	
interactions

Δ

χ ty
p/

χ E
TH

L = 15

L = 18

No	qualitative	difference	between	clean	
and	disordered	models.	Very	strong	
approach	to	ETH	with	the	system	size.	

Highly	nontrivial	(strongly	chaotic)	
localized	side	



Mechanism	of	delocalization:	drift	of	the	correlation	length.

H = VS0
z + ϵHint + Hbath

Idea:	find	recursively	LIOM:	 	

Use	perturbation	theory	(Birkhoff	normal	form).	First	order	in	 	and	all	orders	in	 Work	in	
the	TD	limit.	Make	no	assumptions	about	eigenstates,	gaps,…

[Q, H ] = 0

ϵ 1/V .

Q = S0
z +

1
V

q1(ϵ) +
1

V2
q2(ϵ) + …,

Can	solve	analytically	in	the	linear	order	in	ϵ

Q = Sz
0 +

ϵ
V

Hint +
ϵ

V2
σz

0[Hbath, Hint] +
ϵ

V3
[Hbath, [Hbath, Hint]] + …

This	is	an	expansion	of	the	conserved	charge	(and	the	AGP)	in	the	
Krylov	space.	

V
ϵ



Γ2
N = ∥i[QN, H ]∥2 ≈ ϵ2 ∥ℒ2N+1Hint∥2

V4N+2

This	is	a	convergent	procedure	for	any	finite-dimensional	matrices.

[QN, H ] =
ϵ

V 2N+1
ℒ2N+1Hint

Stop	at	N-th	order:

Generic	chaotic	models	(no	selection	rules):	D.	E.	Parker	et.	al.	2019;	A.	Avdoshkin,	A.	Dymarsky	
2020;	X.	Cao	2021,	…	Disorder	plays	no	role!	

∥ℒkO∥2 ≈ ( 2k
eτ )

2k

, ⇒ ΓN ∼
N!

(τV )N

Minimal	decay	rate	when	
		

	
N* ∼ τV log(Vτ) ↔
Γ2

N* ∼ exp[−τV log Vτ]

Divergence	is	due	to	virtual	UV	
processes!	LIOM	correlation	length	
flows	with	the	distance,	no	
exponential	tails!



Can	do	the	variational	minimization	in	the	Krylov	space	instead	of	perturbative	approach

The	variational	
approach	agrees	with	
perturbative	at	small	 	
and	then	crossovers	to	
a	very	slow	asymptotic	
regime.	

Many	nearly	
degenerate	solutions	
in	the	slow	regime.

N

0 5 10 15 20 25 30 35
N
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||[
Q N

,H
]||2

LIOM	is	
stable

LIOM	decays	

De
ca
y	
ra
te

Order	of	expansion

Qvar = Sz
0 + α0Hint + α1σz

0[Hbath, Hint] + α2[Hbath, [Hbath, Hint]] + …, ∥[Qvar, H ]∥ = min



What	about	earlier	studies	showing	exponential	L-bits

L

lo
g(

Ω m
in
)

Digitized	data	with	subtracted	slope.	Strong	drift	of	slope.	MBL	is	
unstable	using	arguments	by	W.	De	Roeck,	F.	Huveneers	(2015)

N.	Pancotti,	M.	Knap,	D.	A.	Huse,	I.	Cirac,	and	M.	Banuls,	
PRB	2018.	“For	strong	disorder,	the	decay	of	λM	is	
compatible	with	an	exponential	form,	e−M/ξ		”
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h = 3.0

h = 4.0

h = 5.0

h = 7.0

h = 9.0

“Exponential scaling” of the slowest operator in the MBL phase 
(T O'Brien, D Abanin, G. Vidal, and Z. Papic, PRB, 2016)

The digitized data for  with a subtracted mean 
slope. True statement: “For strong disorder, the decay 
of λM is incompatible with an exponential form, e−M/ξ. ” 

h = 9



W = 8 − 20

A.	Morningstar,	L.	Colmenarez,	V.	Khemani,	D.	J.	Luitz,	and	D.	A.	Huse,	2021,D.	Sels	2021,	
no	signatures	of	localization	for	 .W ≲ 20

Visible	factorial	growth.	Agrees	with	Birkhoff	construction.	 .tTh > exp[70]



Numerical	progress	in	MBL	disorder/time	scales

2008 2018

Wc ≈ 3.6

tTh ≈ 3 105
2019

Wc ≥ 5.3

tTh ≥ 108

2020 2021

Wc ≥ 10

tTh ≥ 1015

Wc ≥ 20

tTh ≥ 1030

Age	of	the	universe	



MBL is a glass. Spectral function for the disordered XXZ chain 

• Indication for scaling (  noise). No variable subdiffusion exponents. 

• Consistent with  spreading of the correlation functions up to the Thouless time 
 and then crossover to diffusion. 

• Empirical explanation through FGR with a broad distribution of relaxation times: Griffiths in 
energy space: L. Vidmar, B. Krajewski, J. Bonca, M. Mierzejewski, PRL, 2021

𝜔−1 1/𝑓

log(t)
tTh ∼ exp[τW ]



Semiclassical	dynamics	of	interacting	fermions:	treat	fermion	bi-linears	
as	classical	SU(N)	spins	(Ł.	Iwanek,	M.	Mierzejewski,	A.	P.,	D.	Sels,	A.	Sajna,	2022)

Similar	results	hold	for	classical	spins	(J.	Wurtz,	A.P.,	D.	Sels,	2018)



Conclusions
• No real evidence for localization transition in TD limit analytical or numerical. 

• Existing and earlier numerical results all point to absence of localization. 
Incorrect finite size scaling, mistakes, unjustified assumptions in theoretical 
arguments 

• Quantum mechanics is not qualitatively important at high temperatures.  

• MBL seems to be a transient glassy regime, which is very similar to known 
other examples: FPU, Floquet,… 

• Positive developments: gained a lot of intuition on a transition/crossover from 
integrable to ergodic systems.  

• Open questions: reconciling classical nearly integrable dynamics (Arnold 
diffusion, KAM,…) with quantum (proliferation of resonances, divergence of 
, emergence of RMT). 

• Main lesson: we must remain skeptical and not be biased by even accepted 
theories.

χ


